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Abstract

Recently, Transfer Entropy (TE) was proposed as a
new approach to correct the QT interval by setting
TE(RR→QT) equal to 0. In the first part of the study, we
provided a closed-form solution for the coefficient of a lin-
ear correction formula according to TE=0, when the ran-
dom process QT/RR is stationary and normally distributed.
When the QT/RR history is neglected, the obtained coeffi-
cient is equivalent to the slope of the QT/RR relationship
obtained by minimum mean square error (MMSE). When
the history is instead considered, the optimal coefficient
takes a different expression. Also, we found that TE=0 can-
not always be set. Therefore, we introduced a new QT cor-
rection paradigm according to minimum transfer entropy
(MTE). In the second part of the study, we computed the
correction formulas according to both MMSE and MTE,
from QT/RR series extracted from 25 Holter ECG record-
ings available on Physionet. The MTE approach consid-
ered individual Pearson’s correlation coefficients between
previous QT interval and RR value, which was found statis-
tically different than 0, i.e., 0.70±0.31 (p < 0.01). The in-
dividual coefficients obtained with both approaches were:
MMSE=0.143±0.061 vs MTE=0.101±0.052 (p < 0.05),
with the latter resulting in an average reduction of about
27%. The study suggested that the use of QT/RR history
significantly changes the value of the optimal coefficient.

1. Introduction

The relationship between QT and RR intervals has been
extensively investigated for i) reaching a better understand-
ing of the interaction between autonomic nervous system
and ventricular repolarization; and ii) its practical role in
determining the cardiac risk for drug safety testing.

The problem of comparing QT intervals measured at dif-
ferent heart rates has been under investigation for more
than 100 years. Different correction schemes were widely
studied to reduce the effect of the heart rate on the mea-
sured QT interval. For example, Bazett’s, Fridericia’s and
Framingham’s correction formulas are among the most

widely used for quantifying the corrected QT interval
(QTc). Such formulas are based on the instantaneous RR
value and its corresponding QT interval. Although these
formulas make the computation of QTc feasible in short
ECG recordings, it is well known that that QT/RR rela-
tionship presents a hysteresis, that makes the QT interval
dependent on a history of previous RR values, up to 2 pre-
ceding minutes [1]. In addition, formulas were found hav-
ing different performance for risk stratification [2]. These
limitations still encourage investigations for alternative QT
correction schemes.

The classic approach used to correct the QT interval is to
propose a parametric correction formula of QTc and to fit
its parameters in such a way to set the correlation between
QTc and RR equal to 0. For a linear correction formula of
the form QTc = QT+α(1−RR), this is equivalent to find
α that minimizes the covariance between QTc and RR or,
alternatively, the mean square error between QT and αRR
after removing their mean values. Here, we defined this
approach as correction according to minimum mean square
error (MMSE).

Recently, Transfer Entropy (TE) has been evaluated to
assess the inter-relationship between the RR and QT inter-
val series at different history lengths and was proposed as
a new approach for correcting the QT interval by setting
TE equal to 0 [3, 4]. The objective of this study was to
shed light on how much different the introduced correc-
tion scheme is from MMSE. With this aim in mind, in the
first part of the study, we investigated on closed-form so-
lutions for the parameter α of a linear correction formula
when the bivariate random process formed by QT/RR is
stationary and normally distributed. In the second part of
the study, we compared the parameter α computed using
both schemes on Holter ECG recordings.

2. Methods

2.1. The QT/RR model

Let us assume that the RR and QT series are realiza-
tions of a stationary, multivariate and normally-distributed
random process. In this scenario, any subset of the random
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variables composing the process is distributed as a mul-
tivariate Normal distribution. Hence, the random vector
composed by consecutive variables can be defined as[

qk

rk

]
∼ N(µ,Σ) (1)

with

qk =
[
QTk QTk−1 · · · QTk−(nQT−1)

]⊺
rk =

[
RRk RRk−1 · · · RRk−(nRR−1)

]⊺ (2)

where nRR and nQT represent the number of RR and QT
values considered and k is the beat index, whereas µ and
Σ are the constant-in-time mean vector and covariance ma-
trix of the random process.

According to the stationary model, the means, vari-
ances, autocorrelation coefficients and Pearson’s correla-
tion coefficients for two random variables X and Y can be
defined as follows

µX = E[X]

σ2
X = E[(X − µX)

2]

ρX [τ ] =
E[(Xk+|τ | − µX)(Xk − µX)]

σ2
X

ρX,Y [τ ] =
E[(Xk+τ − µX)(Yk − µY )]

σXσY
.

(3)

To improve readability, in the rest of the paper, we used
ρX = ρX [1] and ρX,Y = ρX,Y [0] for these two coefficients.

2.2. Linear correction formula and trans-
fer entropy

In this study, we employed TE to determine the optimal
linear correction formula, i.e., finding the optimal α value
of

QTck = QTk + α(1− RRk) (4)

such that TE between RR and QTc is zero.
As reported in [3], the main concept for optimal cor-

rection according to TE was that past samples should not
change the entropy value of the corrected random variable.
If this holds then these samples do not affect the corrected
value because they turn out to be statistical independent.
The TE from RR to QTc can be written as

TRR→QTc = h(QTck|Qqk)

− h(QTck|Qqk,RRk,Rrk)
(5)

where h(X|C) is the Conditional Differential Entropy of
the random variable X conditioned on all values of C, and
Q and R are matrices selecting the history of qk and rk to

condition upon, but excluding QTk and RRk (the matrices
contained only 0 and 1, and their first entry is 0).

In order to compute the TE, we relied on well-known re-
sults about the entropy of a multivariate Gaussian variable
that, for a variable X with d dimensions and covariance
matrix ΣX , is

h(X) =
d

2
+

d

2
log(2π) +

1

2
log(|ΣX |) (6)

where |ΣX | represents the determinant of ΣX .
The conditional entropy of two variable is

h(Y |X) = h(X,Y )− h(X), (7)

and, when (X,Y ) is normally distributed, the marginal
distribution of X can be obtained by removing the rows
and columns related to the random variable Y from the co-
variance matrix.

Using (4), (6) and (7), the optimal value of α, according
to TE = 0, was obtained by solving the equation1

|Σ(QTc(α),Qqk)| =
|Σ(QTk,Qqk,RRk,Rrk)||Σ(Qqk)|

|Σ(Qqk,RRk,Rrk)|
(8)

where the notation of Σ(Xi)i∈N defines the covariance ma-
trix built with the ordered sequence of random variables
(Xi)i∈N. In case the matrix Q does not select any variable
on the right-hand side of (8), the determinant of Σ(Qqk) is
set to 1.

In this context, the left-hand side of (8) is a polynomial
function of order 2 with respect to α. In addition, consider-
ing that TE ≥ 0, the solution of (8) might not exist. Here,
we proposed that QT correction has to be performed under
a new paradigm that can be defined as minimum transfer
entropy (MTE). Such minimum value can be found by

d|Σ(QTc(α),Qqk)|
dα

= 0. (9)

In the next sections, we investigated on three different
cases for QT correction according to MTE. The appendix
reports the mathematical derivation for each case.

2.2.1. Case 1

In the first case, we considered only the use of
QTk/RRk pair to perform the correction according to
MTE. In other words, no histories of QT and RR were
considered. The first optimal α value was found by setting

TRR→QTc = h(QTck)− h(QTck|RRk) = 0. (10)

By solving (8), it was possible to show that

α = ρQT,RR

σQT

σRR

, (11)

that is equal to the QTk/RRk slope according to MMSE.
1Note that |Σ(QTc(α),Qqk,RRkRrk)

| = |Σ(QTk,Qqk,RRk,Rrk)
|,

which does not depend on α, when the correction formula in (4) is used.
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2.2.2. Case 2

In the second case, we wanted to verify what value of α
would set TE = 0 when one previous RR value is added
in the framework. This is equivalent to assume a non-zero
correlation between QTk and RRk−1. The TE formula-
tion was the following

TRR→QTc = h(QTck)− h(QTck|RRk,RRk−1) = 0
(12)

which differed from 0 for any value of α. However, the
MTE solution was still located at α = ρQT,RRσQT/σRR.

2.2.3. Case 3

In the third case, we considered RRk and QTk−1 in the
correction scheme. In particular, the TE was

TRR→QTc = h(QTck|QTk−1)

− h(QTck|QTk−1RRk) = 0.
(13)

Here, it was possible to show that

α =

(
ρQT,RR − ρQT,RR[−1]ρQT

1− ρQT,RR[−1]2

)
σQT

σRR

. (14)

2.3. Experiment and statistical analyses

Comparing the α parameter found through MMSE in
(11) and the one with MTE in (14), it is clear that the auto-
and cross-correlation coefficients play a role in the correc-
tion formula. However, it is not clear whether their con-
tributions become significantly relevant on real data. In
order to verify so, we analyzed QT/RR profiles extracted
from Holter ECG recordings and computed the individual
parameter α for each subject and for the two schemes.

One-sample Kolmogorov-Smirnov test was employed to
test whether data come from a Gaussian distribution. A
paired t-test was used to compare the α values of MMSE
vs MTE. One-sample t-test was used to verify whether i)
the α parameter was different from Framingham’s coef-
ficient (i.e., 0.154); and ii) the auto- and cross-correlation
coefficients differed from 0. Significance levels set at 0.05.

2.4. Dataset and QT/RR extraction

Similarly to [3], we employed two datasets freely
available on Physionet [5], i.e., “MIT-BIH Normal Si-
nus Rhythm Database” and “MIT-BIH Long-Term ECG
Database”, with a total of 25 subjects from which a 24h
Holter ECG recording was collected.

A standard ECG processing pipeline was performed on
consecutive windows of 10 minutes. In each window, a
Butterworth filter (3rd order, 0.5-40 Hz, zero phase) was

MMSE MTE
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Figure 1. Errorbars for the individual parameters α com-
puted using the MMSE and MTE schemes. Gray circles
represent the computed values.

applied to remove baseline wandering and high frequency
noise. The isoelectric line of each ECG lead was then
set back to 0 mV by subtracting the mode of the ampli-
tude distribution from the ECG. Beats were detected using
a modified version of Pan and Tompkins’s algorithm [6].
The quality of each ECG lead was assessed by means of
a correlation-based algorithm. In particular, the average
QRS complex was first calculated and Pearson’s correla-
tion coefficients between each QRS complex and the aver-
age one was computed. The lead was considered of suf-
ficient quality only if the average correlation across beats
was higher than 0.9. Only segments with all good quality
leads were further considered in the pipeline.

ECG beats were assigned to specific bins using RR-
binning (minimum and maximum RR values were 500 ms
and 1200 ms, bin size was 50 ms). Beats within each bin
were then processed to create an average QRST template
using Woody’s algorithm [7]. Templates were built on the
vector magnitude. The Q point and the end of T-wave were
located on the template for each RR bin. The latter was
found using the T-wave slope method [8]. In order to build
the correspondence with QTk, the RR interval at beat k
was defined as the difference between the time instant of
the R peak at beat k and that one at beat k− 1. The output
of this phase was the QT/RR profile for each subject.

3. Results

Both α computed using the two schemes were found
normally distributed (p > 0.05). The mean α values of the
two schemes were found statistically significantly differ-
ent between each other (mean ± standard deviation across
subjects; MMSE: 0.143 ± 0.061 vs MTE: 0.101 ± 0.052;
p < 0.05). The average MTE percent reduction of α, with
respect to MMSE, was −27.54%. Figure 1 reports the er-
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rorbars of the individual parameters α for the two correc-
tion schemes. The mean of the α value for MMSE was not
statistically significantly different from Framingham’s co-
efficient (p > 0.05), while it was for MTE (p < 0.05).
The average values of ρQT, ρQT,RR, ρQT,RR[−1] were all
statistically significantly different from 0 (0.82 ± 0.20,
0.83± 0.28, 0.70± 0.31, respectively; p < 0.05).

4. Discussion and conclusions

In this study, we found that the α coefficient calcu-
lated with TE = 0 is equivalent to that one obtained by
MMSE when considering: i) RR and QT series as station-
ary Gaussian processes; ii) no histories of QT and RR;
and iii) a linear correction formula. In addition, we proved
that TE cannot be set to 0 for any QT/RR history. Hence,
we proposed a generalization of the correction scheme that
considers the MTE instead of setting TE = 0.

On real data, we found that Framingham’s coefficient
was higher than the α value computed according to MTE.
This result can be explained by the fact that the QT his-
tory is considered in the new correction scheme, which is
neglected by Framingham’s formula. Despite its different
value, the assessment of the effectiveness the new coeffi-
cient for drug safety testing is left to future works.

In [3], authors also proposed to perform the correction
dynamically, i.e., one sample at a time, by finding the QT
interval that would set TE = 0 considering the QT/RR
history. This approach is substantially different from the
traditional correction scheme in which the formula is se-
lected beforehand, its parameters estimated and then used
in applications. Attention should be payed in applying
such correction approach since correcting under effects of
drugs that alter the heart rate too can be misleading [9].

Appendix

Results for the case 1 can be obtained by

|Σ(QTck(α))
| = σ2

RRα
2 − 2ρQT,RRσQTσRRα+ σ2

QT

|Σ(QTk,RRk)| = σ2
QTσ

2
RR(1− ρ2QT,RR)

|Σ(RRk)| = σ2
RR.

Results for the case 2 can be obtained by

|Σ(QTck(α))
| = σ2

RRα
2 − 2ρQT,RRσQTσRRα+ σ2

QT

|Σ(QTk,RRk,RRk−1)| = σ2
QTσ

4
RR

(
1− ρ2QT,RR − ρQT,RR[1]

2

−ρ2RR + 2ρQT,RRρQT,RR[1]ρRR

)
|Σ(RRk,RRk−1)| = σ4

RR(1− ρ2RR).

The discriminant of the quadratic formula for the roots of
(8) is

−
4σ2

QTσ
2
RR(ρQT,RR[−1] − ρQT,RRρRR)

2

1− ρ2RR

which is 0 only if ρQT,RR[−1]−ρQT,RRρRR = 0, or negative
otherwise.

Results for the case 3 can be obtained by

|Σ(QTck(α),QTk−1)
| = σ2

QT

(
α2σ2

RR(1− ρQT,RR[−1]
2)

−2ασQTσRR(ρQT,RR − ρQT,RR[−1]ρQT)

+σ2
QT(1− ρ2QT)

)
|Σ(QTk,QTk−1RRk)| = σ4

QTσ
2
RR

(
1− ρ2QT,RR − ρQT,RR[−1]

2

−ρ2QT + 2ρQT,RRρQT,RR[−1]ρQT

)
|Σ(QTk−1)

| = σ2
QT

|Σ(QTk−1,RRk)| = σ2
QTσ

2
RR(1− ρQT,RR[−1]

2).
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